μSR study of parimagnetism in HoCo$_2$ under hydrostatic pressure

J. Valenta, J. Prchal, M. Vališka, R. Khasanov, M. Kratochvílová and V. Sechovský

Department of Condensed Matter Physics, Charles University in Prague, Czech Republic
Laboratory for muon spin spectroscopy, Paul Scherrer Institut, Villigen, Switzerland

Introduction

- HoCo$_2$ crystallizes in the Laves cubic phase (C15)
- Ho – localized 4f-magnetic moment
- Co – itinerant 3d-electron moment
- $T < T_C$ (80K) – ferrimagnetic ordering in HoCo$_2$
- $T > T_C$ – Co moments survive in paramagnetic region
 \rightarrow ferromagnetic clusters (Co moments) coupled antiparallel to the nearest neighbor Ho – moments → **PARIMAGNETIC configuration** [1-4]
 \rightarrow characteristic temperature – flipping temperature T_f (125 K)

Experimental

- Samples prepared by arc-melting, characterized by XRD and EDX
- AC-susceptibility at ambient pressure – MPMS (Quantum Design)
- Under hydrostatic pressure:
 - AC-susceptibility
 - **μSR spectroscopy**

<table>
<thead>
<tr>
<th>Material pressure cell</th>
<th>AC-susceptibility</th>
<th>μSR spectroscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>CuBe bronze + NiCrAl</td>
<td></td>
<td>NP35N alloy</td>
</tr>
<tr>
<td>Nominal pressure</td>
<td>3 GPa</td>
<td>2 GPa</td>
</tr>
<tr>
<td>Medium</td>
<td>Daphne 7373</td>
<td>Daphne 7373</td>
</tr>
<tr>
<td>Manometer</td>
<td>Manganin wire</td>
<td>Indium</td>
</tr>
</tbody>
</table>

Parimagnetic configuration survive in $p < 3$ GPa and Co magnetic clusters survive in $p < 2$ GPa

T_f is mainly controlled by Ho-Co ex. interaction.

T^* is mainly controlled by Co-Co ex. interaction.

T^*, T_f and T_C evolve with pressure in the same manner \Rightarrow some connection among effects.

Pressure causes the lost of Co magnetism [6] \Rightarrow the shift of T_C and weakening of Ho-Co ex. inter.

\Rightarrow Possible connection among T^*, T_f and T_C is via Co-Co interaction. Because we can imagine that T_C is direct by Ho-(Co mag. clusters).

References:

Email of the presenting author: valeja@mag.mff.cuni.cz